Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mon Not R Astron Soc ; 464(1): 968-984, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32753768

RESUMO

We present multi-wavelength detections of nine candidate gravitationally-lensed dusty star-forming galaxies (DSFGs) selected at 218GHz (1.4mm) from the ACT equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of z = 4.1 - 1.0 + 1.1 (68 per cent confidence interval), as expected for 218GHz selection, and an apparent total infrared luminosity of log 10 ( µ L IR / L ⊙ ) = 13.86 - 0.30 + 0.33 , which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is µ d = 4.2 - 1.0 + 1.7 kpc , further evidence of strong lensing or multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modelling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth. ( τ = 4.2 - 1.9 + 3.7 ) to dust around the peak in the modified blackbody spectrum (λ obs ⩽ 500µm), a result that is robust to model choice.

2.
Science ; 330(6005): 800-4, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-21051633

RESUMO

Gravitational lensing is a powerful astrophysical and cosmological probe and is particularly valuable at submillimeter wavelengths for the study of the statistical and individual properties of dusty star-forming galaxies. However, the identification of gravitational lenses is often time-intensive, involving the sifting of large volumes of imaging or spectroscopic data to find few candidates. We used early data from the Herschel Astrophysical Terahertz Large Area Survey to demonstrate that wide-area submillimeter surveys can simply and easily detect strong gravitational lensing events, with close to 100% efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...